Using the combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), the precipitate microstructure is quantitatively investigated in the heat-affected zones (HAZs) of Al-Zn-Mg metal inert gas (MIG)-welds, and the resulting mechanical properties are determined by hardness measurements. Three initial states prior to welding (T4, T6, and T7) are investigated, and the subsequent microstructure evolution during natural aging and postwelding heat treatments (PWHTs) is assessed. The critical part of the HAZ is shown to be the transition region where partial dissolution of the initially present precipitates occurs. In this transition zone, precipitate coarsening is shown to occur for the T6 and T7 initial states, contrarily to the T4 material. After PWHT, the T6 and T7 materials experience a weak region related to this coarsening behavior, whereas the T4 material HAZ is able to recover a homogeneous microstructure after a suitably chosen PWHT. Simple model ramp heat treatments are shown to describe the main phenomena involved in the HAZ. Finally, a precipitation hardening model is successfully applied to the microstructural data to describe the hardness profiles in the various HAZs.