Under the well-known bilinear method of Hirota, the specific expression for N-soliton solutions of (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada(gCDGKS) equation in fluid mechanics is given. By defining a noval restrictive condition on N-soliton solutions, resonant Y-type and X-type soliton solutions are generated. Under the previous new constraints, combined with the velocity resonance method and module resonant method, the mixed solutions of resonant Y-type solitons and line waves, breather solutions are found. Finally, with the support of long wave limit method, the interaction between resonant Ytype solitons and higher-order lumps is shown, and the motion trajectory equation before and after the interaction between lumps and resonant Y-type solitons is derived.