We study exact soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2) in four-dimensional spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures and construct special kinds of one-soliton solutions whose action density TrFμνFμν can be real-valued. These solitons are shown to be new type of domain walls in four dimension by explicit calculation of the real-valued action density. Our results are successful applications of the Darboux transformation developed by Nimmo, Gilson and Ohta. More surprisingly, integration of these action densities over the four-dimensional spaces are suggested to be not infinity but zero. Furthermore, whether gauge group G = U(2) can be realized on our solition solutions or not is also discussed on each real space.