The proteins of highly purified chromaffin-granule membranes were separated by one- or two-dimensional electrophoresis, then transferred to nitrocellulose sheets; glycosylation was investigated by binding of several different radioiodinated lectins. Over 20 different glycosylated components were identified; comparison with mitochondrial and microsomal fractions suggested that most of the major glycoproteins are genuine components of the chromaffin granule membrane, rather than contaminants originating in other organelles. Two-dimensional electrophoresis revealed heterogeneity within several of the glycoproteins, and this is ascribed to differences in the state of glycosylation, on the basis of shifts in electrophoretic mobility produced by treatment with neuraminidase. Neuraminidase treatment of chromaffin granule membranes also enhances the binding of many lectins. The identities of the lectin-binding bands are discussed: neither cytochrome b561 nor the F1-like ATPase appears to be glycosylated. Chromogranin A, although a glycoprotein, does not bind any of the lectins tested, but a number of concanavalin-A binding proteins, as well as dopamine beta-hydroxylase, are present in the chromaffin granule lysate.