Soluble mannose receptor (sMR) and soluble haemoglobin scavenger receptor (sCD163) are macrophage activation markers which have previously been demonstrated to be increased in patients with inflammation, auto-immunity and malignancies. To investigate the clinical diagnostic and prognostic significance of preoperative serum sMR and sCD163, the present study investigated 143 gastric cancer (GC) patients, 66 subjects with benign gastric disease and 59 healthy controls, using an ELISA assay. Preoperative serum levels of sMR and sCD163 ranged from 0.165 to 0.885 µg/ml (median=0.374 µg/ml) and from 0.291 to 1.760 µg/ml (median=0.628 µg/ml) in GC patients, respectively. The expression levels of sMR and sCD163 were elevated compared with all controls (P<0.0001). Receiver operating characteristic analyses suggested that the optimum diagnostic cut-offs for sMR and sCD163 were 0.3405 µg/ml [area under curve (AUC) 0.7284, sensitivity 61.54%, and specificity 73.60%] and 0.6645 µg/ml (AUC 0.7766, sensitivity 53.85%, and specificity 86.40%), respectively. Notably, the measurement of serum sMR and sCD163 levels in conjugation, markedly enhanced the diagnostic accuracy (AUC 0.8490, sensitivity 70.63% and specificity 84.00%). Preoperative serum sMR and sCD163 levels correlated significantly with serum carcinoembryonic antigen, CA199, CA724 and CA125 concentrations in GC patients (P<0.05), however this association was not observed with sMR and CA724. High preoperative serum sMR and sCD163 levels correlated significantly with shorter overall survival (P=0.0041; P<0.0001, respectively) and were demonstrated to act as adverse prognostic factors (P=0.006; P<0.001, respectively). Furthermore, preoperative serum sMR and sCD163 levels correlated positively with the degree of lymphatic and distant metastasis of GC. In conclusion, preoperative serum sMR and sCD163 may be novel diagnostic and prognostic markers for GC and further studies are required in order to elucidate the underlying molecular mechanisms of sMR and CD163 in the development and progression of GC.