Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To enhance lychee quality assessment and address inconsistencies in post-harvest pest detection, this study presents a multi-source fusion approach combining hyperspectral imaging, X-ray imaging, and visible/near-infrared (Vis/NIR) spectroscopy. Traditional single-sensor methods are limited in detecting pest damage, particularly in lychees with complex skins, as they often fail to capture both external and internal fruit characteristics. By integrating multiple sensors, our approach overcomes these limitations, offering a more accurate and robust detection system. Significant differences were observed between pest-free and infested lychees. Pest-free lychees exhibited higher hardness, soluble sugars (11% higher in flesh, 7% higher in peel), vitamin C (50% higher in flesh, 2% higher in peel), polyphenols, anthocyanins, and ORAC values (26%, 9%, and 14% higher, respectively). The Vis/NIR data processed with SG+SNV+CARS yielded a partial least squares regression (PLSR) model with an R2 of 0.82, an RMSE of 0.18, and accuracy of 89.22%. The hyperspectral model, using SG+MSC+SPA, achieved an R2 of 0.69, an RMSE of 0.23, and 81.74% accuracy, while the X-ray method with support vector regression (SVR) reached an R2 of 0.69, an RMSE of 0.22, and 76.25% accuracy. Through feature-level fusion, Recursive Feature Elimination with Cross-Validation (RFECV), and dimensionality reduction using PCA, we optimized hyperparameters and developed a Random Forest model. This model achieved 92.39% accuracy in pest detection, outperforming the individual methods by 3.17%, 10.25%, and 16.14%, respectively. The multi-source fusion approach also improved the overall accuracy by 4.79%, highlighting the critical role of sensor fusion in enhancing pest detection and supporting the development of automated non-destructive systems for lychee stem borer detection.
To enhance lychee quality assessment and address inconsistencies in post-harvest pest detection, this study presents a multi-source fusion approach combining hyperspectral imaging, X-ray imaging, and visible/near-infrared (Vis/NIR) spectroscopy. Traditional single-sensor methods are limited in detecting pest damage, particularly in lychees with complex skins, as they often fail to capture both external and internal fruit characteristics. By integrating multiple sensors, our approach overcomes these limitations, offering a more accurate and robust detection system. Significant differences were observed between pest-free and infested lychees. Pest-free lychees exhibited higher hardness, soluble sugars (11% higher in flesh, 7% higher in peel), vitamin C (50% higher in flesh, 2% higher in peel), polyphenols, anthocyanins, and ORAC values (26%, 9%, and 14% higher, respectively). The Vis/NIR data processed with SG+SNV+CARS yielded a partial least squares regression (PLSR) model with an R2 of 0.82, an RMSE of 0.18, and accuracy of 89.22%. The hyperspectral model, using SG+MSC+SPA, achieved an R2 of 0.69, an RMSE of 0.23, and 81.74% accuracy, while the X-ray method with support vector regression (SVR) reached an R2 of 0.69, an RMSE of 0.22, and 76.25% accuracy. Through feature-level fusion, Recursive Feature Elimination with Cross-Validation (RFECV), and dimensionality reduction using PCA, we optimized hyperparameters and developed a Random Forest model. This model achieved 92.39% accuracy in pest detection, outperforming the individual methods by 3.17%, 10.25%, and 16.14%, respectively. The multi-source fusion approach also improved the overall accuracy by 4.79%, highlighting the critical role of sensor fusion in enhancing pest detection and supporting the development of automated non-destructive systems for lychee stem borer detection.
As some of the richest sources of natural antioxidants, small berry fruits have attractive colors and special tastes, with recognized benefits for human health. However, sour tastes in small berry juices result in a poor flavor and low acceptance among consumers, greatly limiting their marketability. Among the most commonly used deacidification methods, chemical deacidification methods can neutralize fruit juice via the addition of a deacidification agent, while physical deacidification methods include freezing deacidification, ion-exchange resin deacidification, electrodialysis deacidification, and chitosan deacidification. All of these methods can markedly improve the pH of fruit juice, but they introduce new substances into the juice that may have an influence on its color, taste, and stability. Biological deacidification can effectively remove malic acid from fruit juice, reducing the content from 15 g/L to 3 g/L; additionally, it maintains the taste and stability of the juice. Therefore, it is widely applied for fruit juice deacidification. On this basis, some compound deacidification technologies have also emerged, but they also present problems such as high costs and complicated working procedures. This review of deacidification methods for small berry juice provides a foundation for the industrial development of such juices.
The early-ripening peach industry has undergone rapid development in the Panxi region of the Sichuan Basin in recent years. However, after the introduction of some new peach varieties to the high-altitude peach-producing areas in Panxi, the titratable acid content in peach fruit has significantly increased. This study compared the fruit quality indicators of early-ripening peach varieties cultivated in Xide County (a high-altitude peach-producing area) and Longquanyi District (a low-altitude peach-producing area) in Sichuan Province and analyzed the differences in organic acid metabolism by combining primary metabolomic and transcriptomic approaches. The results showed that the ‘Zhongtaohongyu’ fruit from the high-altitude peach-producing area had a much higher accumulation of malic acid and, accordingly, a significantly higher organic acid content than the other samples. The lower annual average temperature and stronger ultraviolet radiation in high-altitude peach-producing areas may lead to the increased expression of genes (PpNAD-ME1, PpNADP-ME3, and PpPEPC1) in the organic acid synthesis pathway and the decreased expression of genes (PpACO2, PpNAD-MDH2/3/4/5, and PpPEPCK2) in the organic acid degradation pathway in peach fruit, ultimately resulting in the accumulation of more organic acids. Among them, the downregulation of the key genes PpNAD-MDH3/4/5 involved in malic acid metabolism may be the main reason for the higher malic acid accumulation in peach fruit from high-altitude peach-producing areas. Overall, this study elucidates the mechanism by which environmental factors enhance the accumulation of organic acids in peach fruit from high-altitude peach-producing areas from a multi-omics perspective, as well as providing a theoretical basis for screening key genes involved in organic acid metabolism in peach fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.