The nucleobase queuine (q) and its nucleoside queuosine (Q) are micronutrients derived from bacteria that are acquired from the gut microbiome and/or diet in humans. Following cellular uptake, Q is incorporated at the wobble base (position 34) of tRNAs with a GUN anticodon, which is important for efficient translation. Early studies suggested that cytosolic uptake of queuine is mediated by a selective transporter that is regulated by mitogenic signals, but the identity of this transporter has remained elusive. Here, through a cross-species bioinformatic search and genetic validation, we have identified the solute carrier family member SLC35F2 as a unique transporter for both queuine and queuosine in Schizosaccharomyces pombe and Trypanosoma brucei. Furthermore, gene disruption in HeLa cells revealed that SLC35F2 is the sole transporter for queuosine in HeLa cells (Km 174 nM) and a high-affinity transporter for the queuine nucleobase (Km 67 nM), with the presence of another low-affinity transporter (Km 259 nM) in these cells. Competition uptake studies show that SLC35F2 is not a general transporter for other canonical ribonucleobases or ribonucleosides, but selectively imports q and Q. The identification of SLC35F2, an oncogene, as the transporter of both q and Q advances our understanding of how intracellular levels of queuine and queuosine are regulated and how their deficiency contributes to a variety of pathophysiological conditions, including neurological disorders and cancer