The advection-dispersion equation, ADE, has commonly been used to describe solute transport in fractured rock. However, there is one key question that must be addressed before the mathematical form of the so-called Fickian dispersion that underlies the ADE takes on physical meaning in fractures. What is the required travel distance, or travel time, before the Fickian condition is met and the ADE becomes physically reasonable? A simple theory is presented to address this question in tapered channels. It is shown that spreading of solute under forced-gradient flow conditions is mostly dominated by advective mechanisms. Nevertheless, the ADE might be valid under natural flow conditions. Furthermore, several concerns are raised in this paper with regard to using the concept of a field-scale matrix diffusion coefficient in fractured rocks. The concerns are mainly directed toward uncertainties and potential bias involved in finding the continuum model parameters. It is illustrated that good curve fitting does not ensure the physical reasonability of the model parameters. It is suggested that it is feasible and adequate to describe flow and transport in fractured rocks as taking place in three-dimensional networks of channels, as embodied in the channel network concept. It is argued that this conceptualization provides a convenient framework to capture the impacts of spatial heterogeneities in fractured rocks and can accommodate the physical mechanisms underlying the behavior of solute transport in fractures. All these issues are discussed in relation to analyzing and predicting actual tracer tests in fractured crystalline rocks.