The dipalladium(I) complex Pd(2)Cl(2)(dmpm)(2) (1a) [dmpm = bis(dimethylphosphino)methane] is known to react with elemental sulfur (S(8)) to give the bridged-sulfide complex Pd(2)Cl(2)(μ-S)(dmpm)(2) (2a) but, in the presence of excess S(8), PdCl(2)[P,S-dmpm(S)] (4a) and dmpm(S)(2) are generated. Treatment of 1a with elemental selenium (Se(8)), however, gives only Pd(2)Cl(2)(μ-Se)(dmpm)(2) (3a). Complex 4a is best made by reaction of trans-PdCl(2)(PhCN)(2) with dmpm(S). Complex 2a reacts with MeI to yield initially Pd(2)I(2)(μ-S)(dmpm)(2) and MeCl, and then Pd(2)I(2)(μ-I)(2)(dmpm)(2) and Me(2)S, whereas alkylation of 2a with MeOTf generates the cationic, bridged-methanethiolato complex [Pd(2)Cl(2)(μ-SMe)(dmpm)(2)]OTf (5). Oxidation of 2a with m-CPBA forms a mixture of Pd(2)Cl(2)(μ-SO)(dmpm)(2) and Pd(2)Cl(2)(μ-SO(2))(dmpm)(2), whereas Pd(2)Br(2)(μ-S)(dmpm)(2) reacts selectively to give Pd(2)Br(2)(μ-SO)(dmpm)(2) (6b). Treatment of the Pd(2)X(2)(μ-S)(dmpm)(2) complexes with X(2) (X = halogen) removes the bridged-sulfide as S(8), with co-production of Pd(II)(dmpm)-halide species. X-ray structures of 3a, 5 and 6b are presented. Reactions of dmpm with S(8) and Se(8) are clarified. Differences in the chemistry of the dmpm systems with that of the corresponding dppm systems [dppm = bis(diphenylphosphino)methane] are discussed.