Polymeric composite films have been explored for many photocatalytic applications, from water treatment to self-cleaning devices. Their properties, namely, thickness and porosity, are controlled mainly by the preparation conditions. However, little has been discussed on the effect of thickness and porosity of polymeric composite films for photocatalytic processes, especially in gas phase. In the present study, different preparation treatments of ZnO-based polymeric composite films and their effects on its performance and stability were investigated. The polymeric composites were prepared by solution mixing followed by non-solvent induced phase separation (NIPS), using poly(vinylidene fluoride) (PVDF) as the matrix and ZnO-based photocatalysts. Different wet thickness, photocatalyst mass, and treatments (e.g., using or not pore-forming agent and compatibilizer) were assessed. A low ZnO/PVDF ratio and higher wet thickness, together with the use of pore-forming agent and compatibilizer, proved to be a good strategy for increasing photocatalytic efficiency given the low agglomerate formation and high polymer transmittance. Nonetheless, the composites exhibited deactivation after several minutes of exposure. Characterization by XRD, FTIR-ATR, and SEM were carried out to further investigate the polymeric film treatments and stability. ZnO film was most likely deactivated due to zinc carbonate formation intensified by the polymer presence.