The orthogonality of Hilbert spaces whose elements can be represented as simple and double layer potentials is determined. Conditions of well-posed solvability of integral equations for the sum of simple and double layer potentials equivalent to double-sided Dirichlet, Neumann, and Dirichlet-Neumann boundary value problems for the Laplacian are established in the Hilbert space, elements of which as well as their normal derivatives have the jump through boundary surface. The properties of boundary operators that relate the double-sided boundary conditions of different types for the three dimensional Laplace equation are investigated. Keywords-Laplacian, Dirichlet, Neumann, simple and double layer potentials, well-posed solvability, boundary operator )