We present the extension of the successful Constant Perturbation Method (CPM) for Schrödinger problems to the more general class of Sturm-Liouville eigenvalue problems. Whereas the orginal CPM can only be applied to Sturm-Liouville problems after a Liouville transformation, the more general CPM presented here solves the Sturm-Liouville problem directly. This enlarges the range of applicability of the CPM to a wider variety of problems and allows a more efficient solution of many problems. The CPMs are closely related to the second-order coefficient approximation method underlying the SLEDGE software package, but provide for higher order approximations. These higher order approximations can also be obtained by applying a modified Neumann method. The CPM approach, however, leads to simpler formulae in a more convenient form.