In this paper, we have obtained a relativistic and spherically symmetric stellar configuration that describes an anisotropic fluid with a charge distribution that represents a potential model for a dark energy star and we specify particular forms in the gravitational potential and the electric field intensity which allows solve the Einstein-Maxwell field equations. The reason for proposing this model originates from the evidence that recent observational findings suggest that the universe has an accelerated cosmic expansion and the model of dark energy star is one of the most reasonable explanations of this phenomena. The field equations are integrated analytical and new stellar configurations are obtained are analyzed. For each these solutions we found that the radial pressure, the anisotropy factor, energy density, metric coefficients, mass function, charge density are regular and well behaved in the stellar interior. With the new solutions can be developed models of dark energy stars physically acceptable where the causality condition is not satisfied or the strong energy condition is violated. This model has a great application in the study of the fundamental theories of physics and cosmology. Several independent observations indicate that the greater part of the total energy density of the universe is in the form of dark energy and the rest in the form of nonbaryonic cold dark matter particles, but which have never been detected.