“…Recently, many studies have been conducted to solve the EED problem. There is a growing interest in many modern random-based metaheuristic algorithms (MAs), because they do not need any derivative information or gradient information in the search process (Jadhav et al, 2013); these methods include particle swarm optimization (PSO) (Cao et al, 2020;Lin et al, 2022), the colony predation algorithm (CPA) (Tu et al, 2021), hunger games search (HGS) (Yang et al, 2021), Harris hawks optimization (HHO) (Heidari et al, 2019), the slime mould algorithm (SMA) (Li et al, 2020a), the weighted mean of vectors (INFO) (Ahmadianfar et al, 2022), and the Runge Kutta optimizer (RUN) (Ahmadianfar et al, 2021), which have yielded great success in a variety of fields, such as feature selection (Hu et al, 2022;Liu et al, 2022), economic emission dispatch (Dong et al, 2021), bankruptcy prediction (Xu et al, 2019;Zhang et al, 2021), train scheduling (Song et al, 2023), image segmentation (Hussien et al, 2022;Yu et al, 2022), multi-objective problems (Hua et al, 2021;Deng et al, 2022a), gate resource allocation (Wu et al, 2020a;Deng et al, 2020), complex optimization problems (Deng et al, 2022b), resource allocation (Deng et al, 2022c), expensive optimization problems (Li et al, 2020b;Wu et al, 2021a), airport taxiway planning (Deng et al, 2022d), robust optimization (He et al, 2020), scheduling problems (Gao et al, 2020;Han et al, 2021;Wang et al, 2022b), and medical diagnosis (Wang et al, 2017) (Chen et al, 2016). Hota et al (2010) used fuzzy computing to solve EED problems using a modified bacterial forag...…”