Motivated by an equation arising in magnetohydrodynamics, we address the well-posedness theroy for the non-diffusive magneto-geostrophic equation. Namely, an active scalar equation in which the divergence-free drift velocity is one derivative more singular that the active scalar. In [14], the authors prove that the non-diffusive equation is ill-posed in the sense of Hadamard in Sobolev spaces, but locally well posed in spaces of analytic functions. Here, we give an example of a steady state that is nonlinearly stable for periodic perturbations with initial data localized in frequency straight lines crossing the origin. For such well-prepared data, the local existence and uniqueness of solutions can be obtained in Sobolev spaces and the global existence holds under a size condition over the H 5/2 + (T 3 ) norm of the perturbation.