We define nonassociative cyclic extensions of degree m of both fields and central simple algebras over fields. If a suitable field contains a primitive mth (resp., qth) root of unity, we show that suitable nonassociative generalized cyclic division algebras yield nonassociative cyclic extensions of degree m (resp., qs). Some of Amitsur's classical results on non-commutative associative cyclic extensions of both fields and central simple algebras are obtained as special cases.2010 Mathematics Subject Classification. Primary: 17A35; Secondary: 17A60, 16S36.