It was recently predicted by simulations and confirmed by neutron diffraction experiments that the structure of liquid tetrahydrofuran (THF) contains cavities. The cavities can be quite large and have a net positive electrostatic potential, so they can serve as pre-existing traps for excess electrons created via photodetachment from various solutes. In this paper, we use electron photodetachment via charge-transfer-to-solvent (CTTS) excitation of sodide (Na(-)) to probe for the presence of pre-existing cavities in a series of ether solvents: THF, diethyl ether, 1,2-dimethoxyethane (DME), and diglyme (DG). We find that electrons photodetached from sodide appear after a time delay with their equilibrium spectrum in all of these solvents, suggesting that the entire series of ethers contains pre-existing solvent cavities. We then use the variation in electron recombination dynamics with CTTS excitation wavelength to probe the nature of the cavities in the different ethers. We find that the cavities that form the deepest electron traps turn on at about the same energy in all four ether solvents investigated, but that the density of cavities is lower in DG and DME than in THF. We also examine the dynamics of the neutral sodium species that remains following CTTS photodetachment of an electron from sodide. We find that the reaction of the initially created gas-phase-like Na atom to form a (Na(+),e(-)) tight-contact pair occurs at essentially the same rate in all four ether solvents, indicating that only local solvent motions and not bulk solvent rearrangements are what is responsible for driving the partial ejection of the remaining Na valence electron.