A method of calculation of vibronic or electron-phonon coupling constant is presented for a Jahn-Teller molecule, cyclopentadienyl radical. It is pointed out that symmetry breaking at degenerate point and violation of Hellmann-Feynman theorem occur in the calculations based on a single Slater determinant. In order to overcome these difficulties, the electronic wave functions are calculated using generalized restricted Hartree-Fock and complete active space self-consistent-field method and the couplings are computed as matrix elements of the electronic operator of the vibronic coupling. Our result agrees well with the experimental and theoretical values. A concept of vibronic coupling density is proposed in order to explain the order of magnitude of the coupling constant from view of the electronic and vibrational structures. It illustrates the local properties of the coupling and enables us to control the interaction. It could open a way to the engineering of vibronic interactions.