Employing the Hybrid Reverse Monte Carlo (HRMC) simulation, we compute, using the obtained three-dimensional configurations, the orientational correlations of water molecules in the supercooled 9.26 molal LiCl aqueous solution. This study aims to add relevant structural properties to those obtained in our latest studies and further support our findings. The Li/Cl pair ions hydration shells and the water molecules distribution studied using the Radial Pair Distribution Functions (RPDF), ([Formula: see text]) and ([Formula: see text]) are further described using the Orientational Pair Correlation Functions (OPCF), [Formula: see text] which describes the probability of a water molecule oriented by the Euler angles [Formula: see text], being located at the position [Formula: see text], with respect to another water molecule oriented [Formula: see text] placed at the origin. The high dimensionality of the orientational correlation functions has not presented a calculation disability, as known with several simulations, in the face of the efficiency of the HRMC and the water–water orientational correlation functions showed the dominant impact of ions on the water molecular dipole orientations within the hydration shells and in the hydrogen bonded molecules network.