The photochemical dynamics of three classes of organic photoredox catalysts employed in organocatalyzed atom-transfer radical polymerization (O-ATRP) are studied using time-resolved optical transient absorption and fluorescence spectroscopies. The nine catalysts selected for study are examples of N-aryl and core-substituted dihydrophenazine, phenoxazine and phenothiazine compounds with varying propensities for control of polymerization outcomes. Excited singlet state lifetimes extracted from the spectroscopic measurements are reported in N,Ndimethylformamide (DMF), dichloromethane (DCM) and toluene. Ultrafast (< 200 fs to 3 ps) electronic relaxation of the photocatalysts after photoexcitation at near-UV wavelengths (318-390 nm) populates the first singlet excited state (S1). The S1-state lifetimes range from 130 ps to 40 ns with considerable dependence on the photocatalyst structure and the solvent. Competition between ground-electronic state recovery and intersystem crossing controls triplet state populations and is a minor pathway in the dihydrophenazine derivatives, but is of greater importance for phenoxazine and phenothiazine catalysts. Comparison of our results with previously reported O-ATRP performances of the various photoredox catalysis shows that high triplet-state quantum yields are not a pre-requisite for controlling polymer dispersity. For example, the 5,10-di(4-cyanophenyl)-5,10-dihydrophenazine photocatalyst, shown previously to exert good polymerization control, possesses the shortest S1-state lifetime (135 ps in DMF and 180 ps in N,N-dimethylacetamide) among the nine examples reported here, and a negligible triplet state quantum yield. The results call for a re-evaluation of the excited state properties of most significance in governing the photocatalytic behaviour of organic photoredox catalysts in O-ATRP reactions.