It is important to identify the effect of assembly and aggregation on the chirality transfer and energy transmission in supramolecular polymer system, since the unordered aggregation is insufficient to promote luminescence enhancement and chirality transfer, even causing the negative effect. Another key issue is to identify the solvent effect on hierarchically chiral self-assembly. Herein, we designed an AIE-core based building block, tetraphenylpyrazine-cholesterol (TPP-Chol), to explore how the solvent component influences chirality transfer and energy transmission of its aggregates and/or assemblies. Interestingly, the hierarchical assembly behavior was realized in the mixture of MeOH/CHCl 3 highly dependent on the MeOH content. During the solvent-directed hierarchical assembly, the morphologic transformations, such as nanoribbons with a width of 150 nm, twisted nanoribbons with helical pitch of 420 nm, nanoribbon clusters, and microflowers with an average diameter of 5.5 μm, were realized with obvious chirality amplification for both circular dichroism (CD) and circularly polarized luminescence (CPL) measurements. The hierarchical assembly of TPP-Chol was also demonstrated by a time-dependent CD test. The work points out the complexity and dynamic of hierarchically chiral self-assembly regulated by the solvent effect, which would be helpful for the development of supramolecular materials with enhanced CPL performance and dynamic chirality.