Abstract. Tackifying resins (TR) are often used to improve the adhesive properties of waterborne pressure-sensitive adhesives (PSAs) derived from latex dispersions.There is a large gap in the understanding of how, and to what extent, the film formation mechanism of PSAs is altered by the addition of TR. Herein, magnetic resonance profiling experiments show that the addition of TR to an acrylic latex creates a coalesced surface layer or "skin" that traps water beneath it. Atomic force microscopy of the PSA surfaces supports this conclusion. In the absence of the TR, particles at the surface do not coalesce but are separated by a second phase composed of surfactant and other species with low molecular weight. The function of the TR is complex.. According to dynamic mechanical analysis, the TR increases the glass transition temperature of the polymer and decreases its molecular mobility at high frequencies. On the other hand, the TR increases the molecular mobility at lower frequencies and thereby promotes the interdiffusion of latex particles to create a skin layer.In turn, the skin layer is a barrier that prevents the exudation of surfactant to the surface. The TR probably enhances the coalescence of the latex particles by