The preparation of biocarbons from cellulose fibres utilised in the production of baby nappy mats (sourced from Feniks Recycling company, Poland) for the removal of methylene blue and rhodamine B dyes has been documented. A Brunauer, Emmett and Teller analysis revealed a surface area within the range of 384 to 450 m2/g. The objective of this study was to investigate the removal efficiency of dyes from aqueous solutions by biocarbons, with a particular focus on the influence of various parameters, including pH, dye concentration, adsorbent dosage, shaking speed, contact time, and temperature. The maximum adsorption capacity of the dyes onto the biocarbons was found to be 85 mg/g for methylene blue and 48 mg/g for rhodamine B, respectively. The Langmuir equation proved to be the most suitable for interpreting the sorption of organic dyes. The adsorption process was found to exhibit a chemisorption mechanism, effectively mirroring the pseudo-second-order kinetics. Furthermore, the adsorption of dyes was observed to be endothermic (the enthalpy change was positive, 9.1–62.6 kJ/mol) and spontaneous under the tested operating conditions. The findings of this study indicate that biocarbons represent a cost-effective option for the removal of methylene blue and rhodamine B. The adsorption method was observed to be an effective and straightforward approach for the removal of these dyes. The results of the Boehm titration analysis and zero charge point value indicated that the synthesised biomaterials exhibited a slightly basic surface character.