This article discusses recent progress by a combination of spectroscopy and quantum-chemical calculations in classifying and characterizing organic mixed-valence systems in terms of their localized vs. delocalized character. A recently developed quantum-chemical protocol based on non-standard hybrid functionals and continuum solvent models is evaluated for an extended set of mixed-valence bis-triarylamine radical cations, augmented by unsymmetrical neutral triarylamine-perchlorotriphenylmethyl radicals. It turns out that the protocol is able to provide a successful assignment to class II or class III Robin-Day behavior and gives quite accurate ground-and excited-state properties for the radical cations. The limits of the protocol are probed by the anthracene-bridged system 8, where it is suspected that specific solute-solvent interactions are important and not covered by the continuum solvent model. Intervalence charge-transfer excitation energies for the neutral unsymmetrical radicals are systematically overestimated, but dipole moments and a number of other properties are obtained accurately by the protocol.