The escalating demand for cobalt in modern industry necessitates the recycling or extraction of this resource for sustainable development. Despite the abundance of lignin in nature, its utilization remains low, highlighting the need to enhance its value-added potential. This study focuses on the synthesis of quaternary ammonium lignin (QAL) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (P507) as ionic liquid (QP–IL) compounds for the extraction of metal ions. A comparison of the extraction behavior of Co(II) and Ni(II) from chloride solution between QP–IL and P507 revealed varying extraction ratios under different conditions, with QP–IL demonstrating a higher cobalt extractability than P507. Furthermore, under identical conditions, QP–IL exhibited superior Co/Ni separation performance (βCo/Ni) compared to P507. Ultimately, QP–IL proved to be more effective than P507 in separating cobalt from mixed solutions.