The Li-O 2 battery has been attracting much attention recently, due to its very high theoretical capacity compared with Li-ion chemistries. Nevertheless, several studies within the last few years revealed that Li-ion derived electrolytes based on alkyl carbonate solvents, which have been commonly used in the last 27 years, are irreversibly consumed at the O 2 electrode. Accordingly, more stable electrolytes are required capable to operate with both the Li metal anode and the O 2 cathode. Thus, due to their favorable properties such as non volatility, chemical inertia, and favorable behavior toward the Li metal electrode, ionic liquid-based electrolytes have gathered increasing attention from the scientific community for its application in Li-O 2 batteries. However, the scale-up of Li-O 2 technology to real application requires solving the mass transport limitation, especially for supplying oxygen to the cathode. Hence, the 'LABOHR' project proposes the introduction of a flooded cathode configuration and the circulation of the electrolyte, which is then used as an oxygen carrier from an external O 2 harvesting device to the cathode for freeing the system from diffusion limitation.