Ion mobility spectrometers can be divided by their principle of ion separation. For example, classical drift tube time-of-flight Ion Mobility Spectrometers (IMS) separate ions by the absolute value of their low field ion mobility; Field Asymmetric Ion Mobility Spectrometers (FAIMS) separate ions by the field dependence of their ion mobility. However, the low field mobilities and the field dependence of the mobility vary only within a limited range for different ions, leading to a limited peak capacity of stand-alone drift tube IMS and FAIMS. Combining both types leads to orthogonal data and thus enhances the selectivity in comparison with standalone devices. In this work, a new approach of enhancing the separation power of a classical drift tube IMS by integrating a field asymmetric waveform ion separation region in longitudinal direction into the drift tube is discussed. This additional separation region is realized by superimposing the constant drift field of a drift tube IMS with an asymmetric parallel AC field using two additional grids inside the drift tube. Since the ions are exposed alternately to high field and low field strengths on their way through the additional separation region, the resulting drift time is affected. Hence, two ion species having the same low-field mobility, but showing a different field dependence of the mobility have different drift times in the enhanced IMS. In order to analyze the ion movement inside such a modified ion mobility spectrometer, the finite element method (FEM) software Comsol Multiphysics is used. Therefore, an existing drift tube IMS model which perfectly agrees with experimental results and considers field inhomogenieties, diffusion, Coulomb repulsion and ion losses at metallic surfaces, is expanded in order to simulate the ion movement in AC fields. This enhanced model provides visualization of the location and shape of the ion cloud during DC/ AC operation. Particular attention is given to the increased broadening of the ion cloud due to field inhomogenieties in the additional AC field. Furthermore, ion losses inside the drift tube caused by the AC field and the additional grids are considered. In this work, simulations are used to theoretically investigate our new separation approach to give a first impression of the possible analytical performance.