The two-dimensional heterogeneous vector bin packing problem (2DHet-VBPP) consists of packing the set of items into the set of various type bins, respecting their two resource limits. The problem is to minimize the total cost of all bins. The problem, known to be NP-hard, can be formulated as a pure integer linear program, but optimal solutions can be obtained by the CPLEX Optimizer engine only for small instances. This paper proposes a metaheuristic approach to the 2DHet-VBPP, based on Reduced variable neighborhood search (RVNS). All RVNS elements are adapted to the considered problem and many procedures are designed to improve efficiency of the method. As the Two-dimensional Homogeneous-VBPP (2DHom-VBPP) is more often treated, we considered also a special version of the RVNS algorithm to solve the 2DHom-VBPP. The results obtained and compared to both CPLEX results and results on benchmark instances from literature, justify the use of the RVNS algorithm to solve large instances of these optimization problems.