The trip planning problem (TPP) can be formulated as a combinatorial optimization problem that searches for the best route to visit a series of landmarks and hotels. Meanwhile, Ising machines have attracted attention due to their efficiency in solving combinatorial optimization problems. The Ising machines solve the combinatorial optimization problems by transforming the problems into quadratic unconstrained binary optimization (QUBO) models. However, the possible input QUBO size of current Ising machines is quite limited. Thus, it is hard to directly embed a large-scale TPP onto the current Ising machines. In this paper, we propose a novel subQUBO annealing method based on the combined variable selection method to solve the TPP. The proposed method finds a quasi-optimal solution to a large problem by repeatedly partitioning the original QUBO model into small subQUBOs that can be embedded onto the Ising machine. Specifically, to construct a subQUBO, we select variables from the original QUBO model, which have small deviation values. Further, we select variables randomly from the original QUBO model, so as not to fall into the local optimum. We have conducted an evaluation experiment using Ising machines on TPP and confirmed that the proposed method outperforms the state-of-the-art methods in terms of POI satisfaction and POI cost.