2023
DOI: 10.1177/17298806231162440
|View full text |Cite
|
Sign up to set email alerts
|

Solving large-scale multi-agent tasks via transfer learning with dynamic state representation

Abstract: Many research results have emerged in the past decade regarding multi-agent reinforcement learning. These include the successful application of asynchronous advantage actor-critic, double deep Q-network and other algorithms in multi-agent environments, and the more representative multi-agent training method based on the classical centralized training distributed execution algorithm QMIX. However, in a large-scale multi-agent environment, training becomes a major challenge due to the exponential growth of the s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?