In order to improve the global search performance of the Komodo Mlipir Algorithm, this paper proposed two adaptive Komodo Mlipir Algorithms with variable fixed parameters (IKMA-1; IKMA-2). Among them, IKMA-1 adaptively controls the parthenogenesis radius of female Komodo dragons to achieve more efficient conversion of global search and local search. Second, IKMA-2 introduces adaptive weighting factors to the ''mlipir'' movement formula of Komodo dragons to improve the local search performance. Both IKMA-1 and IKMA-2 were tested on 23 benchmark functions in CEC2013 and compared with the other seven optimization algorithms. The Wilcoxon rank-sum test and Friedman rank test were used to compare the performance of different algorithms. Furthermore, IKMA-1 and IKMA-2 are applied to two constrained engineering optimization problems to verify the engineering applicability of the improved algorithm. The results show that both IKMA-1 and IKMA-2 have better convergence accuracy than the initial KMA. In terms of the benchmark function simulation results, IKMA-1 improves the performance by 17.58% compared to KMA; IKMA-2 improves by 10.99%. Both IKMA-1 and IKMA-2 achieve better results than other algorithms for engineering optimization problems, and IKMA-2 outperforms IKMA-1.INDEX TERMS Komodo Mlipir Algorithm, variable fixed parameters, adaptive optimization, engineering design optimization problems.
I. INTRODUCTIONEstablishing models to deal with practical problems is an essential means of current academic research, and how to solve models faster and better depends on the actual solution performance of various algorithms. An optimization algorithm is an application technology based on mathematics and used to solve various practical optimization problems. At present, optimization algorithms can be mainly divided into data processing algorithms, neural network algorithms, and swarm intelligence algorithms [1]. Applied optimization problems widely exist in many fields, such as signal processing, production scheduling, medical applications, image processing, and path planning.However, since these optimization problems often involve discrete, discontinuous, and uncertain factors, it is not realistic to rely on a single algorithm to solve all optimization problems in life [2]. Therefore, the innovation of newThe associate editor coordinating the review of this manuscript and approving it for publication was Muhammad Zakarya .