Proceedings of the 4th Croatian Combinatorial Days 2023
DOI: 10.5592/co/ccd.2022.02
|View full text |Cite
|
Sign up to set email alerts
|

Solving the dimer problem on Apollonian gasket

Abstract: For any three circles in the plane where each circle is tangent to the other two, the Descartes' theorem yields the existence of a fourth circle tangent to the starting three. Continuing this process by adding a new circle between any three tangent circles leads to Apollonian packings. The fractal structures resulting from infinite continuation of such processes are known as Apollonian gaskets. Close-packed dimer configurations on such structures are well modeled by perfect matchings in the corresponding graph… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?