Solving the Matrix Exponential Function for Special Orthogonal Groups SO(n) up to n = 9 and the Exceptional Lie Group G2
Norbert Kaiser
Abstract:In this work the matrix exponential function is solved analytically for the special orthogonal groups SO(n) up to n=9. The number of occurring k-th matrix powers gets limited to 0≤k≤n−1 by exploiting the Cayley–Hamilton relation. The corresponding expansion coefficients can be expressed as cosine and sine functions of a vector-norm V and the roots of a polynomial equation that depends on a few specific invariants. Besides the well-known case of SO(3), a quadratic equation needs to be solved for n=4,5, a cubic … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.