2021
DOI: 10.1155/2021/6668345
|View full text |Cite
|
Sign up to set email alerts
|

Solving the Traveling Salesman Problem: A Modified Metaheuristic Algorithm

Abstract: The traveling salesman problem (TSP) is one of the most important issues in combinatorial optimization problems that are used in many engineering sciences and has attracted the attention of many scientists and researchers. In this issue, a salesman starts to move from a desired node called warehouse and returns to the starting place after meeting n customers provided that each customer is only met once. The aim of this issue is to determine a cycle with a minimum cost for this salesman. One of the major weakne… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 26 publications
(6 citation statements)
references
References 35 publications
0
5
0
1
Order By: Relevance
“…To verify the performance of the CACO algorithm, 20 independent experiments were conducted in different size city sets and compared with the latest improved particle swarm optimization algorithm MPSO [39] and wolf swarm optimization algorithm D-GWO [40] so far, and the results are shown in Tables 3 and 4.…”
Section: Comparison With the Latest Improved Algorithmmentioning
confidence: 99%
“…To verify the performance of the CACO algorithm, 20 independent experiments were conducted in different size city sets and compared with the latest improved particle swarm optimization algorithm MPSO [39] and wolf swarm optimization algorithm D-GWO [40] so far, and the results are shown in Tables 3 and 4.…”
Section: Comparison With the Latest Improved Algorithmmentioning
confidence: 99%
“…Particle swarm algorithm (PSO) for a traveling salesman problem has been improved by introducing the best current solution [44]. The basic idea is to use the best current iteration in the moving steps, improving the movement of the particles toward the best regains that have the best quality of solutions in the search space.…”
Section: Related Workmentioning
confidence: 99%
“…Mayoritas penelitian terkait traveling salesman problem umumnya dibedakan menjadi dua yaitu traveling salesman problem (TSP) secara umum dan multiple traveling salesman problem (MTSP) yang kemudian dikembangkan menjadi colored traveling salesman problem (CTSP). Pada penelitian untuk permasalahan TSP umum telah dilakukan ujicoba dengan beberapa algoritma evolutionary diantaranya adalah Algoritma Genetik yang dilakukan perubahan pada operator crossovernya [7], Particle Swarm Optimization (PSO) dan perkembangannya yang disebut sebagai MPSO [8], Algoritma Ant Colony Optimization (ACO) dan perkembangannya yang disebut sebagai ACS [9], bahkan terdapat juga penelitian yang berusaha membandingkan beberapa algoritma (termasuk algoritma evolutionary) untuk mencari solusi paling optimal dari TSP [10]. Sedangkan pada CTSP telah dilakukan penelitian menggunakan algoritma genetik dan pengembangannya yang menggabungkan Algoritma Genetik dengan Hill Climbing dan Algoritma Greedy [11].…”
Section: Penelitian Terdahuluunclassified