2019
DOI: 10.33142/msra.v1i1.671
|View full text |Cite
|
Sign up to set email alerts
|

Solvothermal Synthesis and Visible Photocatalytic Activity of Zn0.4Cd0.6S/TiO2/Reduced graphene oxide Nanomaterials

Abstract: Zn0.4Cd0.6S/TiO2/Reduced graphene oxide (Zn0.4Cd0.6S/TiO2/RGO) nano-photocatalyst was synthesized by a facile solvothermal method. During the reaction, TiO2 and Zn0.8Cd0.2S nanoparticles were evenly dispersed across the surface of RGO, which enhanced response to visible light. The photocatalytic activity of as-synthesized Zn0.4Cd0.6S/TiO2/RGO nanomaterial was studied by means of degrading methylene blue (MB) through the irradiation of visible light. Compared with other nanomaterials, the Zn0.4Cd0.6S/TiO2/ RGO … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 20 publications
0
2
0
Order By: Relevance
“…TiO 2 nanoparticle is one of the most proper and popular semiconductors whose applications cover diverse industrial areas including photocatalysis [1,2], thin-lm, sunscreen, photovoltaic, electrodes [3,4], sensors [5,6], and drug delivery [7,8]. In this regard, TiO 2 nanoparticle have been prepared through different methods, including sol-gel [9], inverse micelle [10,11], hydrothermal [12], straight oxidation [13][14][15], chemical vapor deposition [16][17][18], physical vapor deposition [19][20][21], electrochemical accumulation [22][23][24], sonochemical [25], microwave [26][27][28], and organometallic complex compounds [29][30][31][32][33][34]. However, almost all of the mentioned methods require high temperature (usually more than 500) [35].…”
Section: Introductionmentioning
confidence: 99%
“…TiO 2 nanoparticle is one of the most proper and popular semiconductors whose applications cover diverse industrial areas including photocatalysis [1,2], thin-lm, sunscreen, photovoltaic, electrodes [3,4], sensors [5,6], and drug delivery [7,8]. In this regard, TiO 2 nanoparticle have been prepared through different methods, including sol-gel [9], inverse micelle [10,11], hydrothermal [12], straight oxidation [13][14][15], chemical vapor deposition [16][17][18], physical vapor deposition [19][20][21], electrochemical accumulation [22][23][24], sonochemical [25], microwave [26][27][28], and organometallic complex compounds [29][30][31][32][33][34]. However, almost all of the mentioned methods require high temperature (usually more than 500) [35].…”
Section: Introductionmentioning
confidence: 99%
“…TiO 2 nanoparticle is one of the most proper and popular semiconductors whose applications cover diverse industrial areas including photocatalysis [1,2], thin-lm, sunscreen, photovoltaic, electrodes [3,4], sensors [5,6], and drug delivery [7,8]. In this regard, TiO 2 nanoparticle have been prepared through different methods, including sol-gel [9], inverse micelle [10,11], hydrothermal [12], straight oxidation [13][14][15], chemical vapor deposition [16][17][18], physical vapor deposition [19][20][21], electrochemical accumulation [22][23][24], sonochemical [25], microwave [26][27][28], and organometallic complex compounds [29][30][31][32][33][34]. However, almost all of the mentioned methods require high temperature (usually more than 500) [35].…”
Section: Introductionmentioning
confidence: 99%