Sensorized actuators are critical to imitate proprio-/exteroception properties of biological neuromuscular systems. Existing add-on approaches, which physically blend heterogeneous sensor/actuator components, fall short of yielding satisfactory solutions, considering their suboptimal interfaces, poor adhesion, and electronic/mechanical property mismatch. Here, we report a single homogeneous material comprising seamless sensing-actuation unification properties at nano-/molecule levels, in which built-in sensing functions originate from the actuator architecture itself. In-situ-grown silver nanoparticles and metal-ligand complexes cooperatively create a silver–polymer framework (SPF) that is stretchable (1200%), conductive (0.076 S/m), and strong (0.76 MPa in-strength). SPF displays concomitant multimodal sensing (mechanical and thermal cues) and sensorized actuation capabilities, which include proprio-deformation and external stimuli perceptions (simultaneous with load-lifting ability up to 3700× of own weight). In view of its human somatosensitive muscular systems imitative functionality, the reported SPFs bode well for use with next generation functional tissues including artificial skins, human-machine interfaces, self-sensing robots, and otherwise dynamic materials.