1976
DOI: 10.1016/0026-2714(76)90140-2
|View full text |Cite
|
Sign up to set email alerts
|

Some advancements in the analysis of two-unit parallel redundant systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

1979
1979
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 31 publications
(3 citation statements)
references
References 6 publications
0
3
0
Order By: Relevance
“…In 1955, Cox [1] first proposed the "supplementary variable technique (SVT)" and established the M/G/1 queuing system. Gaver [2] was the first to apply this technique for reliability models, and subsequently, other authors followed this line of research, such as Linton [3], Gupta and Gupta [4], Shi and Li [5], Chung [6], Oliveira et al [7], Zhang and Wu [8], Shakuntla et al [9], Singh et al [10], Ke et al [11], Shekhar et al [12], Gao and Wang [13].…”
Section: Introductionmentioning
confidence: 99%
“…In 1955, Cox [1] first proposed the "supplementary variable technique (SVT)" and established the M/G/1 queuing system. Gaver [2] was the first to apply this technique for reliability models, and subsequently, other authors followed this line of research, such as Linton [3], Gupta and Gupta [4], Shi and Li [5], Chung [6], Oliveira et al [7], Zhang and Wu [8], Shakuntla et al [9], Singh et al [10], Ke et al [11], Shekhar et al [12], Gao and Wang [13].…”
Section: Introductionmentioning
confidence: 99%
“…Among them we can highlight the supplementary variable technique, introduced in 1955 by Cox [1], due to the fact that this technique outperforms imbedded Markov chains in the steady-state case. The supplementary variable technique was firstly applied in Gaver [2]; subsequently, other authors, such as Linton [3], Goel et al [4], Gupta and Sharma [5], Shi and Li [6], Chung [7], Yuan [8], Dhillon and Cheng [9], Ram et al [10], Zhang and Wang [11], Ke et al [12], followed this line of research.…”
Section: Introductionmentioning
confidence: 99%
“…[7,8,12] and the phase method, e.g. [11]. The resulting set of transient differential equations are then solved by a LT technique.…”
Section: Introductionmentioning
confidence: 99%