2017
DOI: 10.1016/j.jmaa.2017.01.069
|View full text |Cite
|
Sign up to set email alerts
|

Some applications of Dubinin's lemma to rational functions with prescribed poles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
2
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(5 citation statements)
references
References 5 publications
2
2
0
1
Order By: Relevance
“…Malik [9]. In addition to these things, we demonstrate how some recently proved results due to S. L. Wali and W. M. Shah, [12] [13], could have been obtained without appealing to the results of Osserman [10] and Dubinin [5]. To Sum up, we asseverate that our work besides improving certain existing estimates also furnishes relatively elementary proofs of the results obtained by S. L. Wali and W. M. Shah in [12] and [13].…”
Section: Resultssupporting
confidence: 78%
See 1 more Smart Citation
“…Malik [9]. In addition to these things, we demonstrate how some recently proved results due to S. L. Wali and W. M. Shah, [12] [13], could have been obtained without appealing to the results of Osserman [10] and Dubinin [5]. To Sum up, we asseverate that our work besides improving certain existing estimates also furnishes relatively elementary proofs of the results obtained by S. L. Wali and W. M. Shah in [12] and [13].…”
Section: Resultssupporting
confidence: 78%
“…Although Remark 3 shows that Theorem 1 improves Theorem E, but the bound in (12) demands that all the zeros of R(z) be known beforehand. Since computation of zeros is not always an easy piece of work, therefore in those situations where the zeros of R(z) are unspecified, one may desire to have an improvement which instead of the zeros of R(z) depends upon some coefficients of P (z) in R(z) = P (z) W (z) .…”
Section: Resultsmentioning
confidence: 99%
“…As a refinement of Theorem 1.1, Wali and Shah [11] in particular proved the following: In this paper we prove some refinements and generalizations of (1.4) and (1.6) besides that we also prove some inequalities for rational functions, which improve the results due to Wali and Shah [11].…”
Section: We Havesupporting
confidence: 62%
“…The proof of inequalities ( 13) and ( 14) can be found in [15,Lemma 4], [3, Lemma 3 and Theorem 4], and in [3] the geometric function theory was first applied to such a range of problems. Using various versions of the boundary Schwarz lemma, Wali and Shah [24], [26] strengthened (13), (14) in different directions. Kalmykov [13] recently proved two-and three-point distortion theorems for rational functions that generalize some known results on Bernstein-type inequalities for polynomials and rational functions.…”
Section: On Rational Functionsmentioning
confidence: 99%