Single-sided linear induction motors usually appear in magnetic levitation systems of transportation. Since the beginning of such developments, edge effects represent one of the great challenges to overcome in analytical modelling. For almost four decades, in order to simplify the mathematical treatment of border effects, most analytical models have not considered the secondary leakage flux properly. Although concise and accurate in most cases, such approaches have deficiencies in slotted secondaries. This paper presents an analytical equivalent circuit that considers the secondary reactance for both edge effects, i.e., entry and exit sides. The proposed approach uses an analogical RLC circuit which describes the behavior of magnetizing (exit) and demagnetizing (entry) waves, as well as adapted correction factors for transverse effects.By means of an 8 pole / 175 N prototype, the measured thrust and vertical forces remarkably validate the model for frequencies equal or higher than 60Hz, depending on the values of secondary parameters. The prototype still has a continuous aluminum secondary, which was tested for model comparison purposes.