Abstract:The aim of this paper is twofold. Firstly, we will investigate the link between the condition for the functions $\phi(s)$ from $(\alpha, \beta)$-metrics of Douglas type to be self-concordant and k-self concordant, and the other objective of the paper will be to continue to investigate the recently new introduced $(\alpha, \beta)$-metric ([17]):
$$
F(\alpha,\beta)=\frac{\beta^{2}}{\alpha}+\beta+a \alpha
$$
where $\alpha=\sqrt{a_{ij}y^{i}y^{j}}$ is a Riemannian metric; $\beta=b_{i}y^{i}$ is a 1-form, and $… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.