2020
DOI: 10.51889/2020-3.1728-7901.10
|View full text |Cite
|
Sign up to set email alerts
|

Some Boundary Value Problems With Involution for the Nonlocal Poisson Equation

Abstract: In this paper, we study new classes of boundary value problems for a nonlocal analogue of the Poisson equation. The boundary conditions, as well as the nonlocal Poisson operator, are specified using transformation operators with orthogonal matrices. The paper investigates the questions of solvability of analogues of boundary value problems of the Dirichlet and Neumann type. It is proved that, as in the classical case, the analogue of the Dirichlet problem is unconditionally solvable. For it, theorems on the ex… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?