1968
DOI: 10.1070/im1968v002n04abeh000654
|View full text |Cite
|
Sign up to set email alerts
|

Some Classes of Meromorphic Functions Characterized by Their Spherical Derivative

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2005
2005
2017
2017

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 6 publications
0
3
0
Order By: Relevance
“…Remark. The second inequality was proved by Gavrilov [5] for the class Y 0,−1 (which he denoted W 0 1 ). Proof.…”
Section: Remarksmentioning
confidence: 93%
See 1 more Smart Citation
“…Remark. The second inequality was proved by Gavrilov [5] for the class Y 0,−1 (which he denoted W 0 1 ). Proof.…”
Section: Remarksmentioning
confidence: 93%
“…Yosida [17] has shown that given f ∈ A 0 and ǫ > 0 there exists some δ > 0, such that |z−h|<ǫ f # (z) d(x, y) > δ holds for every h ∈ C. The analog for Y α,β is Theorem 2 below. For β fixed, |h| > 1 and ǫ > 0 we set (5) ∆ ǫ (h) = {z : |z − h| < ǫ|h| −β }.…”
Section: Remarksmentioning
confidence: 99%
“…The distribution of values of functions in W 1 and W 2 has been thoroughly investigated by Julia [10], Yosida [19] and Ostrowski [17]. Gavrilov [5] and Makhmutov [15,16] have made a substantial contribution to the study of W p . Lemma 1 [16].…”
Section: The Class W P and Lemmasmentioning
confidence: 99%