Starting from the quantum Liouville equation for the density operator and applying the Weyl quantization, Wigner equations for the acoustic, optical and Z phonons are deduced. The equations are valid for any solid, including 2D crystals like graphene. With the use of Moyal’s calculus and its properties, the pseudo-differential operators are expanded up to the second order in $$\hbar $$
ħ
. An energy transport model is obtained by using the moment method with closure relations based on a quantum version of the Maximum Entropy Principle by employing a relaxation time approximation for the production terms of energy and energy flux. An explicit form of the thermal conductivity with quantum correction up to $$\hbar ^2$$
ħ
2
order is obtained under a long-time scaling for the most relevant phonon branches.