2018
DOI: 10.13164/ma.2018.01
|View full text |Cite
|
Sign up to set email alerts
|

Some equivalence relationships of regularized regressions

Abstract: Abstract. Regularization is a powerful framework for solving ill-posed problem and preventing model overfitting in modern regression analysis. It is especially useful for high-dimensional or functional (infinite dimensional) regression models. In this paper, we construct two useful equivalence relationships for regularized regression:1. An equivalence between regularized functional regression and regularized multivariate regression. This equivalence provides a computationally efficient way to fit the concurren… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 18 publications
0
1
0
Order By: Relevance
“…For the cases (i) and (ii), examples include Cardot et al (1991Cardot et al ( , 2003, James (2002), Hu et al (2004, Amato et al (2006), Horowitz (2007), Ferraty andVieu (2009), Cook et al (2010), Chen et al (2011), Dou et al (2012), Febrero-Bande and Gonzalez-Manteiga (2013, and Goia and Vieu (2015). For the case (iii), see Ramsay and Dalzell (1991), Fan and Zhang (1999), S ¸ent ürk and M üller (2005, 2008, Yao et al (2005), Harezlak et al (2007), Matsui et al (2009), Valderrama et al (2010, He et al (2005), Jiang and Wang (2011), Ivanescu et al (2015), Chiou et al (2016) and Zhang et al (2018). Also, M üller and Stadtmuller (2005), Horvath andKokoszka (2012), andCuevas (2014) present an excellent overview of research on functional regression models and their applications.…”
Section: Introductionmentioning
confidence: 99%
“…For the cases (i) and (ii), examples include Cardot et al (1991Cardot et al ( , 2003, James (2002), Hu et al (2004, Amato et al (2006), Horowitz (2007), Ferraty andVieu (2009), Cook et al (2010), Chen et al (2011), Dou et al (2012), Febrero-Bande and Gonzalez-Manteiga (2013, and Goia and Vieu (2015). For the case (iii), see Ramsay and Dalzell (1991), Fan and Zhang (1999), S ¸ent ürk and M üller (2005, 2008, Yao et al (2005), Harezlak et al (2007), Matsui et al (2009), Valderrama et al (2010, He et al (2005), Jiang and Wang (2011), Ivanescu et al (2015), Chiou et al (2016) and Zhang et al (2018). Also, M üller and Stadtmuller (2005), Horvath andKokoszka (2012), andCuevas (2014) present an excellent overview of research on functional regression models and their applications.…”
Section: Introductionmentioning
confidence: 99%