In this paper, we study and investigate an interesting Caputo fractional derivative and Riemann–Liouville integral boundary value problem (BVP): c D 0 + q u ( t ) = f ( t , u ( t ) ) , t ∈ [ 0 , T ] , u ( k ) ( 0 ) = ξ k , u ( T ) = ∑ i = 1 m β i R L I 0 + p i u ( η i ) , where n - 1 < q < n , n ≥ 2 , m , n ∈ N , ξ k , β i ∈ R , k = 0 , 1 , ⋯ , n - 2 , i = 1 , 2 , ⋯ , m , and c D 0 + q is the Caputo fractional derivatives, f : [ 0 , T ] × C ( [ 0 , T ] , E ) → E , where E is the Banach space. The space E is chosen as an arbitrary Banach space; it can also be R (with the absolute value) or C ( [ 0 , T ] , R ) with the supremum-norm. R L I 0 + p i is the Riemann–Liouville fractional integral of order p i > 0 , η i ∈ ( 0 , T ) , and ∑ i = 1 m β i η i p i + n - 1 Γ ( n ) Γ ( n + p i ) ≠ T n - 1 . Via the fixed point theorems of Krasnoselskii and Darbo, the authors study the existence of solutions to this problem. An example is included to illustrate the applicability of their results.