Abstract:We study some factorization properties of the idealization R(+)M of a module M in a commutative ring R which is not necessarily a domain. We show that R(+)M is ACCP if and only if R is ACCP and M satisfies ACC on its cyclic submodules, provided that M is finitely generated. We give an example to show that the BF property is not necessarily preserved in idealization, and give some conditions under which R(+)M is a BFR. We also characterize the idealization rings which are UFRs.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.