This paper submits the sequence space $l\left( \widehat{F}\left( r,s\right),\mathcal{F},p,u\right) $ and $l_{\infty }\left( \widehat{F}\left(r,s\right) ,\mathcal{F},p,u\right) $of non-absolute type under the domain ofthe matrix$\widehat{\text{ }F}\left( r,s\right) $ constituted by usingFibonacci sequence and non-zero real number $r$, $s$ and a sequence ofmodulus functions. We study some inclusion relations, topological andgeometric properties of these spaceses. Further, we give the $\alpha $- $%\beta $- and $\gamma $-duals of said sequence spaces and characterization ofthe classes $\left( l\left( \widehat{F}\left( r,s\right) ,\mathcal{F}%,p,u\right) ,X\right) $ and $\left( l_{\infty }\left( \widehat{F}\left(r,s\right) ,\mathcal{F},p,u\right) ,X\right) $.