In Hilbert space, we develop a novel framework to study for two new classes of convex function depending on arbitrary non-negative function, which is called a predominating ℏ-convex function and predominating quasiconvex function, with respect to η , are presented. To ensure the symmetry of data segmentation and with the discussion of special cases, it is shown that these classes capture other classes of η -convex functions, η -quasiconvex functions, strongly ℏ-convex functions of higher-order and strongly quasiconvex functions of a higher order, etc. Meanwhile, an auxiliary result is proved in the sense of κ -fractional integral operator to generate novel variants related to the Hermite–Hadamard type for p t h -order differentiability. It is hoped that this research study will open new doors for in-depth investigation in convexity theory frameworks of a varying nature.