We show that the subconstruct Fing of Prtop, consisting of all finitely generated pretopological spaces, is the largest Cartesian closed coreflective subeonstmct of Prtop. This implies that in any coreflective subconstruct of Prtop, exponential objects are finitely generated. Moreover, in any finitely productive, coreflective subconstruct, exponential objects are precisely those objects of the subconstruct that are finitely generated. We give a counterexample showing that without finite productivity the previous result does not hold.Mathematics Subject Classifications (1991). 54B30, 18D15, 54A05.