Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The continuing miniaturization of optoelectronic devices, alongside the rise of electromagnetic metamaterials, poses an ongoing challenge to nanofabrication. With the increasing impracticality of quality control at a single-feature (-device) resolution, there is an increasing demand for array-based metrologies, where compliance to specifications can be monitored via signals arising from a multitude of features (devices). To this end, a square grid with quadratic sub-features is amongst the more common designs in nanotechnology (e.g. nanofishnets, nanoholes, nanopyramids, μLED arrays etc). The electrical resistivity of such a quadratic grid may be essential to its functionality; it can also be used to characterize the critical dimensions of the periodic features. While the problem of the effective electrical resistivity ρ eff of a thin sheet with resistivity ρ 1, hosting a doubly-periodic array of oriented square inclusions with resistivity ρ 2, has been treated before (Obnosov 1999 SIAM J. Appl. Math. 59 1267–87), a closed-form solution has been found for only one case, where the inclusion occupies c = 1/4 of the unit cell. Here we combine first-principle approximations, numerical modeling, and mathematical analysis to generalize ρ eff for an arbitrary inclusion size (0 < c < 1). We find that in the range 0.01 ≤ c ≤ 0.99, ρ eff may be approximated (to within <0.3% error with respect to finite element simulations) by: ρ e f f = ρ 1 α ( c ) − 1 − ρ 2 / ρ 1 1 + ρ 2 / ρ 1 α ( c ) + 1 − ρ 2 / ρ 1 1 + ρ 2 / ρ 1 c · α ( c ) , α ( c ) = 1 + 0.9707 0.9193 + c 1 − c 2.1261 0.4671 . whereby at the limiting cases of c → 0 and c → 1, α approaches asymptotic values of α = 2.039 and α = 1/c − 1, respectively. The applicability of the approximation to considerably more complex structures, such as recursively-nested inclusions and/or nonplanar topologies, is demonstrated and discussed. While certainly not limited to, the theory is examined from within the scope of micro four-point probe (M4PP) metrology, which currently lacks data reduction schemes for periodic materials whose cell is smaller than the typical μm-scale M4PP footprint.
The continuing miniaturization of optoelectronic devices, alongside the rise of electromagnetic metamaterials, poses an ongoing challenge to nanofabrication. With the increasing impracticality of quality control at a single-feature (-device) resolution, there is an increasing demand for array-based metrologies, where compliance to specifications can be monitored via signals arising from a multitude of features (devices). To this end, a square grid with quadratic sub-features is amongst the more common designs in nanotechnology (e.g. nanofishnets, nanoholes, nanopyramids, μLED arrays etc). The electrical resistivity of such a quadratic grid may be essential to its functionality; it can also be used to characterize the critical dimensions of the periodic features. While the problem of the effective electrical resistivity ρ eff of a thin sheet with resistivity ρ 1, hosting a doubly-periodic array of oriented square inclusions with resistivity ρ 2, has been treated before (Obnosov 1999 SIAM J. Appl. Math. 59 1267–87), a closed-form solution has been found for only one case, where the inclusion occupies c = 1/4 of the unit cell. Here we combine first-principle approximations, numerical modeling, and mathematical analysis to generalize ρ eff for an arbitrary inclusion size (0 < c < 1). We find that in the range 0.01 ≤ c ≤ 0.99, ρ eff may be approximated (to within <0.3% error with respect to finite element simulations) by: ρ e f f = ρ 1 α ( c ) − 1 − ρ 2 / ρ 1 1 + ρ 2 / ρ 1 α ( c ) + 1 − ρ 2 / ρ 1 1 + ρ 2 / ρ 1 c · α ( c ) , α ( c ) = 1 + 0.9707 0.9193 + c 1 − c 2.1261 0.4671 . whereby at the limiting cases of c → 0 and c → 1, α approaches asymptotic values of α = 2.039 and α = 1/c − 1, respectively. The applicability of the approximation to considerably more complex structures, such as recursively-nested inclusions and/or nonplanar topologies, is demonstrated and discussed. While certainly not limited to, the theory is examined from within the scope of micro four-point probe (M4PP) metrology, which currently lacks data reduction schemes for periodic materials whose cell is smaller than the typical μm-scale M4PP footprint.
In this work, we propose a fully coupled multiscale strategy for components made from short fiber reinforced composites, where each Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN) which covers the different fiber orientation states varying within the component. These DMNs need to be identified by linear elastic precomputations on representative volume elements, and serve as high-fidelity surrogates for full-field simulations on microstructures with inelastic constituents. We discuss how to extend direct DMNs to account for varying fiber orientation, and propose a simplified sampling strategy which significantly speeds up the training process. To enable concurrent multiscale simulations, evaluating the DMNs efficiently is crucial. We discuss dedicated techniques for exploiting sparsity and high-performance linear algebra modules, and demonstrate the power of the proposed approach on an industrial-scale three-dimensional component. Indeed, the DMN is capable of accelerating two-scale simulations significantly, providing possible speed-ups of several magnitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.